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Abstract

Continuing from the previous lecture, we consider the moduli space Mreg(n, k) of
framed “genuine” instantons and extend it to its compactification M̂(n, k) of so-called
ideal instantons. This space has singularities, and we define its resolution M̃(n, k) in
terms of the original ADHM data. From here, we study the special case M̃(1, k) as a
Hilbert scheme of points on C2. This gives us a way to categorify Heisenberg algebras
directly through the homology groups of these spaces.

1 Compactification and Resolution of Mreg(n, k)

From before we have the ADHM construction:

Definition 1.1 (ADHM datum). Two hermitian vector space V,W with dimV = k, dimW =
n and maps B1, B2 ∈ End(V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ). We have that the maps
satisfy

[B1, B2] + IJ = 0 (1)

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0 (2)

Moreover U(V ) acts on this space by

(gB1g
−1, gB2g

−1, gI, Jg−1) (3)

Definition 1.2 (Mreg(n, k)). The moduli space of framed genuine instantons is given by
taking the set of ADHM data [B1, B2, I, J ] with trivial stabilizer under the action of U(V )
and quotenting out by U(V ).

Equivalently, however, we can “forget” about the Hermitian structure on V (losing the
notion of adjoints) and deal with a general vector space:
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Theorem 1.3. Let V , W be vector spaces of dimension dimV = k, dimW = n, and maps
B1, B2 ∈ End(V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ), satisfying only

[B1, B2] + IJ = 0 (4)

And GL(n,C) acts on this space in the same way as before, by:

(gB1g
−1, gB2g

−1, gI, Jg−1) (5)

Then the moduli space M(n, k) of all such data with trivial GLn stabilizer, quotiented by
GL(n,C) is equivalent to Mfr(n, k).

This process of forgetting complex structure and then quotienting out by a larger group
is similar to the identification:

U(n)/Tn ∼= GL(n)/Bn (6)

Where Tn is the toroidal subgroup of diagonal matrices and Bn is the Borel subgroup of
upper-triangular matrices.

Proposition 1.4. If ADHM datum [B1, B2, I, J ] satisfies either

1. (Stability) There is no proper subspace S ⊂ V s.t. Bi(S) = S and I(W ) ⊂ S

2. (Co-stability) There is no proper subspace S ⊂ V s.t. Bi(S) = S and S ⊂ ker J

Then it has both nontrivial stabilizer and a closed orbit under GL(V ).

Proof. Assume the stabilizer is nontrivial, so there is a g s.t. gI = I. Then im I ∈
ker(g − 1V ) =: S and moreover since g−1Big = Bi, we have that S is invariant under the Bi

and contains imI. Similarly, Jg−1 = J ⇒ J(g − 1V ) = 0 so im(g − 1V ) ∈ ker J , violating
co-stabillity as well.

An ADHM datum that is both stable and co-stable is called regular.
For the hermitian case, it clear that (B1, B2, I, J) is stable iff (B†1, B

†
2, I
†, J†) is co-stable.

Equation (2) demands compatibility between these descriptions, so in fact it is enough to
just require stability on the system, and co-stability follows:

Mreg(n, k) = {Solutions to (1) + (2) + regularity}/U(V )

It is not too hard to see that all solutions of the ADHM equations giving rise to instantons
are both stable and co-stable. As a result Mreg(n, k) can be written as

Mreg(n, k) = {Solutions to (1) + regularity}/GL(V )

The non-regular case is taken by compactifying this to allow for all ADHM data in the
quotient:
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Definition 1.5. M̂(n, k), the compactification of Mreg(n, k) is defined as

M̂ := {Solutions to (1)}/GL(V )

This is a singular space in the sense that any Riemannian metric defined on the entire
space will have a singularity at some point. For this reason, we define the resolution of this
space.

Definition 1.6 (Resolution). The resolution of a singular space X is a birational map π,
together with a smooth variety, X̃ such that π : X̃ → X.

Definition 1.7. We define M̃(n, k) to be the set of data: satisfying

M̂ := {Solutions to (1) + stability}/GL(V )

From the proof before, we see stability alone is enough to ensure a trivial stabilizer, so
that this quotient is well-defined topologically.

Because stability on [B1, B2] + IJ is the same as co-stability on a corresponding dual
system, it would have worked to also only have co-stability. Either definition works, so long
as we have one stability condition but not the other.

Theorem 1.8. M̃(n, k) is the minimal resolution of M̂(n, k) for all n, k.

Observation 1.9. Although Mreg(1, k) is empty (for, as we know, there are no U(1) in-
stantons), the definition of M̃(n, k) gives rise to a nonempty set of solutions, as we shall see
in the next section.

2 Hilbert Schemes of Points on C2

Definition 2.1 (Hilbert Scheme). A Hilbert scheme HilbnX of n points on an algebraic
variety X is given as the space of all ideals of codimension n in the C[X]. That is, the set
of ideals I so that C[X]/I ∼= V a vector space of dimension n.

This can be thought of as the moduli space of arrangements of n points on X, with
subtleties when the points coincide. Grothendieck showed, through a much more general
result, that this space is in fact a scheme.

Example 2.2. When dimX = 1 we have Hilbn(X) ∼= SnX as the set of arrangements of n
points modulo the symmetric group acting on these points by interchange.

Example 2.3. When X = C, since C[z] is a PID, we are interested in ideals I that are
generated by a polynomial f of degree n. We are then looking all possible spaces V =
C[z]/I ∼= Cn.

Every such ideal gives rise to a map ϕ : C[z]/I → C mapping

z 7→ B ∈ End(V ), 1 7→ v0 ∈ V (7)

That is, we can represent multiplication by z as an operator B
	
V satisfying f(B) = 0.
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The eigenvalues of B are exactly the points corresponding geometrically to this ideal
(through nullstellensatz). We care about the coordinate-independent data:

(B, v0)/GL(V ) (8)

Note that because of the existence of a cyclic vector, this system has the stability property:
any space containing v0 and closed under the action of B is all of V .This constrains the Jordan
form of B. We can go further and show that there is a 1-to-1 correspondence between such
solutions and arrangements of n points.

In general the form of B will be
λ1 1 0 . . . . . .
0 λ1 . . . . . . . . .
...

...
... . . .

...
0 . . . . . . λk 1
0 . . . . . . 0 λk

 (9)

in jordan blocks, where λi 6= λj unless i = j. Then we can form a map from this data into
SnC by B →

∑
λ∈C[λ]λ, where [λ] stands for the multiplicity. This is called the Hilbert-

Chow morphism. For the case of C, it is an isomorphism, as B can be recovered from the
n points on C

We will be more interested in the case X = C2, the 2-dimensional complex space.

Example 2.4. As before, an element in the Hilbert scheme would correspond to an ideal
I ∈ C[x, y] s.t. V := dimC[x, y]/I = n. Consider the map

ϕ : C[x, y]→ V s.t. x 7→ B1, y 7→ B2, 1 7→ v0 = I(1). (10)

Then clearly we have [B1, B2] = 0, so we can write the Bk simultaneously in upper-trianglar
form as:

B1 =


λ1 . . . . . . . . .
0 λ2 . . . . . .
...

...
...

...
0 . . . 0 λn

 , B2 =


µ1 . . . . . . . . .
0 µ2 . . . . . .
...

...
...

...
0 . . . 0 µn

 (11)

Moreover we identify the vector v0 with the embedding operator I : C → V from a 1-
dimensional space into V , so v0 = I(1).

We further have the Hilbert-Chow morphism to SnC2:

π : (B1, B2, I)→ {(λi, µi)}ni=1, (12)

but now we no-longer preserve all information about the matrices, as the upper-triangular
structure is unknown given the projection point.

Note that the orbit of v0 under B1, B2 is all of V , so that any (B1, B2)-stable subspace
of V containing v0 = im I is all of V . This is exactly the stability condition from before. In
fact, aside from [B1, B2] = 0 instead of [B1, B2] + IJ = 0, this is exactly M̃(1, n). In fact, it
is exactly this space:
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Theorem 2.5. We have an isomorphism of smooth spaces:

M̃(1, n) ∼= Hilbn(C2) (13)

To prove this theorem, it is enough to just show J = 0, and we’ll be done.

Proposition 2.6. Consider the resolved space M̃(1, k) from before (i.e. only stability), then
any solution of ADHM has J = 0.

Proof. Because stability implies that C[B1, B2]I = V , it’s enough to show Jp(B1, B2)I = 0
for any monomial. We do this by induction on degree. For degree 0 we have JI = Tr(JI) =
Tr(IJ) = −Tr([B1, B2]) = 0.

For higher degree, we can use [B1, B2] = −JI to commute B1, B2 across one another to
get

JBα1 . . . B2B1 . . . BαmI = JBα1 . . . IJ . . . BαmI + JBα1 . . . B1B2 . . . BαmI

= JBα1 . . . B1B2 . . . BαmI
(14)

so we can reduce this to JBa
1B

b
2I and then use trace properties to get zero.

This proves the theorem.

3 Homology Theory of Hilbn(C2)

For a closed, oriented manifold X of dimension n, we have Poincare duality

Hi(X) ∼= Hn−i(X) (15)

When the manifold is not compact, we must pair the cohomology of compactly-supported
forms with the homology.

Hi(X) ∼= Hn−i
c (X) (16)

and similarly, we define the Borel-Moore homology of locally finite chains by H lf
i
∼=

Hn−i
c (X)

Definition 3.1. The Borel-Moore (locally finite) homology H lf is equivalent to the relative
homology:

1. H lf
i (X) := Hi(X ∪ {∞}, {∞}), the one-point compactification of X

This definition immediately yields

Proposition 3.2. H lf
2m(Cm) = Z and otherwise is equal to zero.

by recognizing Cm ∪ {∞} as S2m. Further:

Proposition 3.3. For a space X that is a disjoint union of a finite number of open subspaces
Xα: H lf

i (X) =
⊕

αH
lf
i (Xα)

Proposition 3.4. The Hilbert scheme Hilbn(C2) is a disjoint union of open spaces Cµ in-
dexed by the partitions of n. Moreover, Cµ ∼= Cn+`(µ), where ` is the number of parts in the
partition µ.
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Sketch. Consider the action of the torus T 2 = 〈(t, q)〉 	Hilbn(C2) by its action on an ideal
element ((t, q)f)(x, y) = f(t−1x, q−1y). The fixed points of this are the ideals

Iµ = (xayb : (a, b) /∈ µ) (17)

Where µ is viewed as its corresponding Young tableau on the plane N2. We then have
corresponding complement ideals:

Bµ = (xayb : (a, b) ∈ µ) (18)

This gives rise to open sets Uµ that cover Hilbn(C2) defined by

Uµ := {I ∈ Hilbn(C2) : BµspansC[x, y]/I} (19)

and the closed sub-cells of these open sets are defined by:

Cµ := {I ∈ Hilbn(C2) : lim
t→0

lim
q→0

(t, q)I = Iµ} (20)

This limiting process picks out exactly the greatest monomials with nonzero coefficients from
all the polynomials of the ideal.

Remark. This type of idea, of decomposing a space into its different orbits, is universally
used in studying not just Hilbert schemes but also projective spaces, Grassmannians, flag
varieties, and other such spaces.

Corollary 3.5.

H lf
∗ (Hilbn(C2)) =

⊕
µ

[Cµ] =
⊕
µ

C (21)

where [Cµ] denotes the fundamental Borel-Moore class (the top homology ring), which in this
case is exactly the only nonzero one.

Observation 3.6. The dimension of this space H lf
∗ (Hilbn(C2)) is p(n), the number of par-

titions of n.

Note however, that unlike Sn(C2), which can also be covered by cells indexed by the
partition type, µ, Hilbn(C2) has the property that it has constant rank for its tangent
space, equal to 2n.

Proposition 3.7. We have a graded dimension for the algebra of homology rings for all
Hilbert schemes of points over C2 of:

gdim
⊕
n

H lf
∗ (Hilbn(C2)) =

∑
n

p(n)qn =
∏
m

1

1− qm
(22)

This is exactly the graded dimension of the space of symmetric polynomials S(p1, p2, . . . )
where deg pi = i. This is exactly a representation of the Heisenberg algebra, suggesting a
connection between these two objects beyond just an isomorphism as graded vector spaces.

Optional:
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Theorem 3.8 (From Fulton). The Poincare polynomial

P lft (X) :=
∑
n≥0

tn dimH lf
n (X) (23)

is equal to ∑
µ

t2n+2`(µ) (24)

for X = Hilbn(C2)

Corollary 3.9. We have an identity for the polynomial

∞∑
n=1

qnP lft (Hn) =
∞∏
m=1

1

1− t2m+2qm
(25)

Theorem 3.10. The homology group H∗[Hilbn(C2)] vanishes on odd degrees and otherwise is tor-
sion free, with betti number;

b2i(Hilbn(C2)) = p(n, n− i) (26)

where p(n, a) is the number of partitions of n into a parts.

Corollary 3.11. The Hilbert polynomial

Pt(X) :=
∑
n≥0

tnbn(X) (27)

is equal to ∑
µ

t2n−2`(µ) (28)

Corollary 3.12. We have an identity for the polynomial

∞∑
n=1

qnPt(Hibn(C2)) =
∞∏
m=1

1

1− t2m−2qm
(29)

We have constructed H lf
∗ and H∗, and in fact all the nontrivial topological information is

contained in the zero fiber Zn of π : Hilbn(C2)→ Sn(C2).

4 Hilbert Schemes and the Heisenberg Algebra

The Heisenberg Lie Algebra s is defined by generators pi, qi so that:

[qj, pi] = cjδij, cj ∈ C× (30)

so that on S(p1, p2, . . . ) the pj act by multiplication and the qj by derivation cj
∂
∂pj

. We can

pair
⊕

j pj and
⊕

i qi as dual vector spaces by:

〈qj, pi〉 = cjδij (31)
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and with this can define the dual space

S∗ = S(q1, q2 . . . ) (32)

with deg qj = j as before, and satisfying:

〈qn1
1 q

n2
2 . . . , pm1

1 pm2
2 〉 = n1!c

n
1δn1,m1 n2!c

n
2δn2,m2 . . . . (33)

Of course we have multiplication on S and comultiplication on S∗. In fact, since the com-
mutation relations give a bilinear pairing:

S∗ ⊗ S → S (34)

by interpreting ci as an element in S, we get

1⊗ pj = pj, qi ⊗ pj = ciδij, (35)

and this gives comultiplication of the Heisenberg algebra:

∆ : pi 7→ 1⊗ pi + pi ⊗ 1 (36)

together with our previous multiplication. This makes this into a Hopf algebra

5 Geometric Realization of the Heisenberg Algebra

Going back to topology: we note that on any Homology ring H∗X we have that a continuous
map ϕ : X → Y between manifolds X and Y descends to a map between chains on X to
chains on Y , and thus gives a map ϕ∗ : H∗X → H∗Y called the pushforward on homology
rings, just by considering the homology of the mapped chains.

Similarly, any map ϕ : X → Y induces a contravariant map ϕ∗ω = ω ◦ ϕ on forms over
Y called the pullback.

Now assume that f : X → Y is a proper map (i.e.) the inverse image of any compact
subset is compact. Then the pushforward descends to the locally-finite homology rings:

f∗ : H lf
∗ (X)→ H lf

∗ (Y ) (37)

By defining f̂ : X̂ → Ŷ on the 1-point compactifications of X, Y s.t. f̂(∞) = ∞. Then by
properness, f is continuous on this space, so we can define the pushforward f̂∗ and pass this
to the relative homology to get f∗.

From this, we can associate Hopf algebra structure to

Hlf =
⊕
n

Hilbn(C2) (38)

by considering a pair of three nested Hilbert schemes1:

Hm+n≥n := {V ∈ Hm+n, V
′′ ∈ Hn, V

′ = V/V ′′ ∈ Hm}
⊂ Hm ×Hn ×Hm+n

(39)

1There is an issue when points collide that V ′ is not guaranteed to have a well-defined vector v0. This can
be resolved by looking at the open sets of distinct points first, and then taking the closure of this constructed
space.
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where for shorthand Hn denotes Hilbn(C2). We then have projections onto the components
as the following diagram illustrates:

Hm+n≥n

Hn ×Hm Hn+m

p′×p′′ p

The following lemma can be proven by checking the preimages of points in SµC2 and
noting that the fibers of the Hilbert-Chow morphism π−1(µi[xi]) are compact:

Lemma 5.1. These projections p′, p′′, p are proper.

So the projections therefore give rise to pushforwards on the Borel-Moore homology.
Moreover, by this fact together with Poincare duality, we can identify elements in the ho-
mology rings with elements in the cohomology rings that we can pull back. Thus, we have
maps:

µ : H lf
∗ (Hn)⊗H lf

∗ (Hm)→ H lf
∗ (Hn+m) (40)

given exactly by mapping homology elements

c1 ⊗ c2 7→ p∗((p
′ × p′′)∗(c1 ⊗ c2)) (41)

This mirrors how multiplication in the Heisenberg algebra respects the degree grading. Sim-
ilarly we have

∆ : H lf
∗ (Hm+n)→ H lf

∗ (Hn)⊗H lf
∗ (Hm (42)

by
c 7→ (p′ × p′′)∗(p∗(c)) (43)

Theorem 5.2. The operations µ,∆ defined as above give Hlf the structure of a graded Hopf
algebra.

Proof. We have already seen that these operations respect the grading. The associativity
and coassicativity conditions follow from the functoriality of pushforward and pullback in
the following diagrams:

Hm+n+r≥n+r≥r

Hm+n≥n ×Hr Hn+m+r≥r

Hm ×Hn ×Hr Hm+n ×Hr Hm+n+r

p′×p′′ p

p′×p′′×id p×id p′×p′′ p

and
Hm+n+r≥n+r≥r

Hm ×Hn+r≥r Hn+m+r≥n+r

Hm ×Hn ×Hr Hm ×Hn+r Hm+n+r

p′×p′′ p

id×p′×p′′ id×p p′×p′′ p
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We can in fact go further and define the fiber Fµ = π−1Sµ(C2) of arrangements of n
points on C of partition type µ. We have that [Fµ] is in fact well-defined and that

[Fµ] ∈ H lf
2(n+`(µ))(Hilbn(C2)) (44)

Theorem 5.3. The [Fµ] form a basis for H lf
∗ (Hilbn(C2)). Picking [Fn] ∈ H lf

∗ (Hilbn(C2))
corresponding to the fiber class with all n points coincident gives a multiplication operator
Pn : Hm → Hn+m corresponding to pm.

By Poincare duality, there is the intersection pairing

∩ : H∗ ×H lf
∗ → C (45)

so that H∗ can in fact be made to correspond to the dual space S∗ of derivations. We can
obtain fundamental classes in the regular homology [Eµ] in a similar way, and have them
form a basis for H∗Hilbn(C2). The remaining relations for the Heisenberg algebra can be
obtained through careful calculation.
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